Abstract

Pulse shaping has become a powerful tool in generating complicated ultrafast optical waveforms to meet specific application needs. Traditionally, pulse shaping focuses on the temporal waveform synthesis. Recent interests in structuring light in the spatiotemporal domain rely on Fourier analysis. A space-to-time mapping technique allows us to directly imprint complex spatiotemporal modulation through taking advantage of the relationship between frequency and time of chirped pulses. The concept is experimentally verified through the generation of spatiotemporal optical vortex (STOV) and STOV lattice. The power of this method is further demonstrated by STOV polarity reversal, vortex collision, and vortex annihilation. Such a direct mapping technique opens tremendous potential opportunities for sculpturing complex spatiotemporal waveforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.