Abstract

Two-dimensional (2D) layered tungsten diselenides (WSe2) material has recently drawn a lot of attention due to its unique optoelectronic properties and ambipolar transport behavior. However, direct chemical vapor deposition (CVD) synthesis of 2D WSe2 is not as straightforward as other 2D materials due to the low reactivity between reactants in WSe2 synthesis. In addition, the growth mechanism of WSe2 in such CVD process remains unclear. Here we report the observation of a screw-dislocation-driven (SDD) spiral growth of 2D WSe2 flakes and pyramid-like structures using a sulfur-assisted CVD method. Few-layer and pyramid-like WSe2 flakes instead of monolayer were synthesized by introducing a small amount of sulfur as a reducer to help the selenization of WO3, which is the precursor of tungsten. Clear observations of steps, helical fringes, and herringbone contours under atomic force microscope characterization reveal the existence of screw dislocations in the as-grown WSe2. The generation and propagation mechanisms of screw dislocations during the growth of WSe2 were discussed. Back-gated field-effect transistors were made on these 2D WSe2 materials, which show on/off current ratios of 10(6) and mobility up to 44 cm(2)/(V·s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.