Abstract
The neuro-fuzzy (NF) approach presented in this work is based on five (5) layered feedforward backpropagation algorithm applied for technical screening of enhanced oil recovery (EOR) methods. Associated reservoir rock-fluid oilfield data from successful EOR projects were used as input and predicted output in the training and validation processes, respectively. The developed model was then tested by using data set from Block B of an Angolan oilfield. The results of the sensitivity analysis between the Mamdani and the Takagi-Sugeno-Kang (TSK) approach incorporated in the algorithm has shown the robustness of the TSK ANFIS (Adaptive Neuro-Fuzzy Inference System) approach in comparison to the other approach for the prediction of a suitable EOR technique. The simulation test results showed that the model presented in this study can be used for technical selection of suitable EOR techniques. Within the area investigated (Block B, Angola) polymer, hydrocarbon gas, and combustion were identified as the suitable techniques for EOR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.