Abstract

To screen key biomarkers of esophageal cancer (ESCA) by bioinformatics and analyze the correlation between key genes and immune infiltration. Expression profile data of ESCA was downloaded from TCGA database, and DEGs in ESCA were screened with R software. After the RNA binding proteins (RBPs) in DEGs were screened, the protein interaction network was constructed using tools such as STRING and Cytoscape and the key genes (HENMT1) were screened. Survival analysis of HENMT1 was performed by Kaplan-Meier method. Functional enrichment analysis of HENMT1 interacting proteins was performed using the DAVID website, and GSEA predicted the signal pathways involved by HENMT1. CIBERSORT algorithm was used to analyze the infiltration of immune cells in ESCA. The expression of HENMT1 in ESCA was detected by immunohistochemistry. A total of 105 RNA binding proteins (RBPs) were differentially expressed in ESCA, and a PPI network was constructed to screen the key gene HENMT1. The expression level of hemmt1 gene was closely related to the infiltration of B cells naive, T cells regulatory (Tregs), neutrophils, T cells CD4 memory activated, master cells resting and dendritic cells resting in ESCA tissues (P < .05). Immunohistochemical results showed that HENMT1 was highly expressed in ESCA tissues and was positively correlated with the expression of MKI67. HENMT1 is related to the occurrence and prognosis of ESCA, and is also related to the infiltration of immune cells in ESCA tissue, which may provide a new idea for the targeted treatment of ESCA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call