Abstract

Nuclear targeting of bacterial proteins is an emerging pathogenic mechanism in bacteria. However, due to the absence of an appropriate screening system for nuclear targeting proteins, systematic approaches to nuclear targeting of bacterial proteins and subsequent host cell pathology are limited. In this study, we developed a screening system for nuclear targeting proteins in Acinetobacter baumannii using a combination of bioinformatic analysis based on nuclear localization signal (NLS) and the Gateway® recombinational cloning system. Among 3367 open reading frames of A. baumannii ATCC 17978, 34 functional or hypothetical proteins were predicted to carry the putative NLS sequences. Of the 29 clones generated by the Gateway® recombinational cloning system, 14 proteins tagged with green fluorescent protein (GFP) were targeted to nuclei of host cells. Among the 14 nuclear targeting proteins, S21, L20, and L32 ribosomal proteins and transposase carried putative nuclear export signal (NES) sequences, but only transposase harbored the functional NES. After translocation to nuclei of host cells, four A. baumannii proteins induced cytotoxicity. In conclusion, we have developed a screening system for nuclear targeting proteins in A. baumannii. This system may open the way to a new field of bacterial pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.