Abstract
Bioactivities of a number of medicinal plants; Alkanna tinctoria (L.) Tausch, Alnus glutinosa (L.) Gaertn., Calamintha nepeta Willk. and C. nepeta, Centaurea iberica Trevir. ex Spreng., Citrus paradisi Macfad., C. paradisi, Citrus sinensis (L.) Osbeck, Colutea cilicica Boiss. & Balansa, Cotinus coggygria Scop., Cuscuta arvensis Beyr. ex Engelm., Equisetum palustre L., Lapsana communis L., Laurus nobilis L., Olea europea L., Plantago major L., Rhus coriaria L, Salvia verticillata L., Sambucus ebulus L., Sedum acre L, Thymus capitatus (L.) Hoffmanns. & Link, T. capitatus, Thymbra spicata L., T. spicata (n: 20), which are used for the prevention and treatment of diverse diseases, were investigated. The antimicrobial activities of extracts were evaluated using broth microdilution assay. The cytotoxicities of extracts were investigated on HeLa cell line by MTT assay. Statistical analysis was performed using GraphPad Prism (5.0). The effects of the extracts, which have the highest antimicrobial activity, on the Escherichia coli and Staphylococcus aureus DNA gyrase gene expression were determined by using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The MICs (µg/ml) of extracts were determined as 32-64, 2-128, 8-128,1-128, 4-128 against Gram-positive, Gram-negative bacteria, yeasts, dermatophytes, and Mycobacterium spp., respectively. No cytotoxicity has been observed in plant extracts tested. DNA gyrase activity was determined for T. capitatus-SFE (128 µg/mL) and L. nobilis-Hx (128 µg/mL) extracts according to the inhibition of DNA gyrase gene expression. Overall, T. capitatus-SFE and L. nobilis-Hx are good candidates for further antimicrobial studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have