Abstract

Increased invasion of synovial fibroblasts and their involvement in cartilage damage are characteristic phenotypes of rheumatoid arthritis (RA). To identify low molecular weight compounds that suppress synovial fibroblast invasion, a panel of inhibitors (n = 330) was initially screened using a real-time cell analysis system for human synovial fibroblasts that were enzymatically isolated from surgical samples of RA patients. To evaluate the effects of the inhibitors identified in the screen, synovial fibroblast migration was measured using a wound-healing assay, and phosphorylation of intracellular signaling molecules was determined by immunoblots. Several candidate inhibitors were identified in the screen, including inhibitors against platelet-derived growth factor receptor (PDGFR), Akt, PI3K, and glycogen kinase synthetase 3 (GSK-3). These inhibitors strongly suppressed synovial fibroblast migration after 72 h and downregulated phosphorylation of Akt (Ser473) at 48 h. When the inhibitors were removed from the culture conditions, both migration and phosphorylated Akt (Ser473) levels were restored. Furthermore, all the categories of inhibitors except for PDGFR inhibitor IV decreased cell proliferation as well as IL-6 production in synovial fibroblasts. Interestingly, GSK-3 inhibitors increased anti-inflammatory cytokine IL-10 production but suppressed IL-23 production from LPS-primed macrophages obtained from healthy donors. In conclusion, blocking PDGFR, PI3K, or GSK-3 could have therapeutic value as an RA treatment that targets the invasion/migration of synovial fibroblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call