Abstract

Carbonyl compounds are widely distributed in organisms, and the commonly used methods for determination of them like UV/fluorescence/mass spectrometry always require derivatization reagents. However, the reported derivatization reagents have significant difference in reactivity, which is very unfavorable for developing highly reactive reagent. In this study, we theoretically investigated the factors affecting the reactivity of hydrazine-based derivatization reagents, and proposed a strategy for filtering highly reactive reagents by quantum chemical calculation. With this strategy, N-propyl-4-hydrazino-1,8-naphthalimide (NPHNA) was filtered out as a fluorescent derivatization reagent. Taking aliphatic aldehydes as representatives, we evaluated the reactivity of NPHNA for carbonyl compounds. The derivatization of NPHNA with aliphatic aldehydes could be finished at room temperature within 60 min or 35 °C within 35 min, which showed higher reactivity than the most popular UV/MS reagent, 2,4-dinitrophenylhydrazine (DNPH). We believe that the strategy we proposed in this work is of great potential to design highly reactive UV/fluorescent/MS labeling reagents for carbonyl compounds and even other analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.