Abstract
Corrections to elastic moduli, including the effective shear modulus, of a solid neutron star crust due to electron screening are calculated. At any given mass density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of a single type with a polarizable charge-compensating electron background. Motion of the nuclei is neglected. The electron polarization is described by a simple Thomas-Fermi model of exponential electron screening. The results of numerical calculations are fitted by convenient analytic formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have