Abstract

The heterotrophic microalga Crypthecodinium cohnii is well known for its lipid accumulation, with a high proportion of docosahexaenoic acid (DHA). In this study, we report a novel screening approach to obtain mutants of C. cohnii with high growth and lipid content using the acetyl-CoA carboxylase (ACCase) inhibitor sethoxydim. C. cohnii mutants were generated using atmospheric and room-temperature plasma (ARTP) and then screened for two rounds in media supplemented with sethoxydim. These efforts led to the identification of mutant M-1-2, which had 24.32% higher growth and 7.05% higher lipid content than the wild type, demonstrating the effectiveness of the sethoxydim-based screening. Consistently, the M-1-2 mutant displayed a 16.15% increase in ACCase enzymatic activity and 1.53-fold upregulation of its ACCase-encoding gene based on comparative ACCase activity analysis and transcriptomic analysis, respectively. In addition, transcriptomic analysis showed that transcripts involved in fatty acid biosynthesis, energy, central carbohydrate, and amino acid metabolism were upregulated in the mutant compared to the wild type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.