Abstract

Nonsteroidal anti-inflammatory drugs reportedly reduce the risk of developing cancer. One mechanism by which they reduce carcinogenesis involves the inhibition of the activity of cyclooxygenase-2, an enzyme that is overexpressed in various cancer tissues. Its overexpression increases cell proliferation and inhibits apoptosis. However, selected cyclooxygenase-2 inhibitors can also act through cyclooxygenase-independent mechanisms. In this study, using ultrafiltration, enzyme-immobilized magnetic beads, high-performance liquid chromatography, and electrospray-ionization mass spectrometry, several isoflavonoids in Trifolium pratense L. extracts were screened and identified. Semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography were then applied to separate the active constituents. Using these methods, seven major compounds were identified in Trifolium pratense L. As cyclooxygenase-2 inhibitors: rothindin, ononin, daidzein, trifoside, pseudobaptigenin, formononetin, and biochanin A, which were then isolated with >92% purity. This is the first report of the presence of potent cyclooxygenase-2 inhibitors in Trifolium pratense L. extracts. The results of this study demonstrate that the systematic isolation of bioactive components from Trifolium pratense L., by using ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography, and high-speed counter-current chromatography, represents a feasible and efficient technique that could be extended for the identification and isolation of other enzyme inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call