Abstract
Sepsis is one of the leading causes of mortality in intensive care units (ICU). The growing incidence rate of sepsis and its high mortality rate result are very important sociosanitary problems. Sepsis is a result of infection which can cause systemic inflammatory and organ failure. But the pathogenesis and the molecular mechanisms of sepsis is still not well understood. The aim of the present study was to identify the candidate key genes in the progression of sepsis.Microarray datasets GSE28750, GSE64457, and GSE95233 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein–protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape. Furthermore, to verify the results of the bioinformatics analyses, the expression levels of selected DEGs were quantified by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) in libobolysaccharide (LPS)-induced Human Umbilical Vein Endothelial Cells (HUVECs) to support the result of bioinformatics analysis.Thirteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in apoptotic process, inflammatory response, innate immune response. Hub genes with high degrees, including MAPK14, SLC2A3, STOM, and MMP8, were demonstrated to have an association with sepsis. Furthermore, RT-PCR results showed that SLC2A3 and MAPK14 were significantly upregulated in the HUVECs induced by LPS compared with controls.In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms of sepsis, and provide candidate targets for diagnosis and treatment of sepsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.