Abstract

Removal of synthetic textile dyes poses a challenge to the textile industry and a threat to the environment's flora and fauna. These dyes are recalcitrant and not very amenable to physical and chemical techniques of degradation. Hence, several studies on alternative bioremediation methods involving plants, plant roots, single microbes, or a consortium of microbes for the decolorization of dyes have been carried out. In the present study, potent bacteria for dye decolorization were isolated from rhizospheric soil of mangrove plants collected from Kamothe, Navi Mumbai, India. Of the 20 isolates obtained after enrichment, seven isolates were used for further screening of efficient decolorization ability in minimal basal media containing 10% glucose, 2.5% trace metal solution, and 0.1% of Methyl Orange (MO) dye concentration. Physiological parameters to optimize the decolorization of dye at optimum pH, temperature, and incubation time were studied for all the seven isolates. UV-vis and Fourier transform infrared spectroscopy were used to investigate dye decolorization. The seven isolates were characterized morphologically, biochemically, and molecular identification of these bacterial isolates was performed by 16S rRNA sequence analysis. The isolates were identified as Bacillus paramycoides, Pseudomonas taiwanensis, Citrobacter murliniae, Acinetobacter pitti, Exiguobacterium acetylicum, Psychrobacter celer, and Aeromonas taiwanensis. Out of these, Aeromonas taiwanensis has shown exceptional capacity by ~ 100% decolorization of azo dye in minimum time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call