Abstract
While organometal halide perovskites are promising for a variety of optoelectronic applications, the morphological and compositional defects introduced by solution processing techniques have hindered efforts at understanding their fundamental properties. To provide a detailed picture of the intrinsic carrier transport properties of methylammonium lead iodide without contributions from defects such as grain boundaries, we utilized pump-probe microscopy to measure diffusion in individual crystalline domains of a thin film. Direct imaging of carrier transport in 25 individual domains yields diffusivities between 0.74 and 1.77 cm2 s-1, demonstrating single-crystal-like, long-range transport characteristics in a thin film architecture. We also examine the effects of excitation density on carrier diffusivity, finding that transport is nearly independent of photoexcited carrier density between 6 × 1017 cm-3 and 4 × 1019 cm-3. Transport modeling of the observed density independence suggests that strong carrier-phonon scattering coupled with a large static relative permittivity is responsible for the unusual transport characteristics of methylammonium perovskite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.