Abstract

The airfreight industry of shipping goods with special handling needs, also known as special cargo, often deals with non-transparent data and outdated technology, resulting in significant inefficiency. A special cargo ontology is a means of extracting, structuring, and storing domain knowledge and representing the concepts and relationships that can be processed by computers. This ontology can be used as the base of semantic data retrieval in many artificial intelligence applications, such as planning for special cargo shipments. Domain information extraction is an essential task in implementing and maintaining special cargo ontology. However, the absence of domain information makes instantiating the cargo ontology challenging. We propose a relation representation learning approach based on a hierarchical attention-based multi-task model and leverage it in the special cargo domain. The proposed relation representation learning architecture is applied for identifying and categorizing samples of various relation types in the special cargo ontology. The model is trained with domain-specific documents on a number of semantic tasks that vary from lightweight tasks in the bottom layers to the heavyweight tasks in the top layers of the model in a hierarchical setting. Therefore, it conveys complementary input features and learns a rich representation. We also train a domain-specific relation representation model that relies only on an entity-linked corpus of cargo shipment domain. These two relation representation models are then employed in a supervised multi-class classifier called Special Cargo Relation Extractor (SCRE). The results of the experiments show that the proposed relation representation models can represent the complex semantic information of the special cargo domain efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call