Abstract
Scratching inhibits pruritogen-evoked responses of neurons in the superficial dorsal horn, implicating a spinal site for scratch inhibition of itch. We investigated if scratching differentially affects neurons depending on whether they are activated by itchy vs. painful stimuli, and if the degree of inhibition depends on the relative location of scratching. We recorded from rat lumbar dorsal horn neurons responsive to intradermal (id) microinjection of serotonin (5-hydroxytryptamine, 5-HT). During the response to 5-HT, scratch stimuli (3mm, 300mN, 2Hz, 20s) were delivered at the injection site within the mechanosensitive receptive field (on-site), or 4–30mm away, outside of the receptive field (off-site). During off-site scratching, 5-HT-evoked firing was significantly attenuated followed by recovery. On-site scratching excited neurons, followed by a significant post-scratch decrease in 5-HT-evoked firing. Most neurons additionally responded to mustard oil (allyl isothiocyanate). Off-site scratching had no effect, while on-site scratching excited the neurons. These results indicate that scratching exerts a state-dependent inhibitory effect on responses of spinal neurons to pruritic but not algesic stimuli. Moreover, on-site scratching first excited neurons followed by inhibition, while off-site scratching immediately evoked the inhibition of pruritogen-evoked activity. This accounts for the suppression of itch by scratching at a distance from the site of the itchy stimulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.