Abstract

This paper reviews some basic research areas associated with Scramjet-powered hypersonic flying vehicle, particularly the forebody boundary-layer transition and intake shock-wave boundary-layer interactions (SBLI). Some technical and physical challenges in aerodynamics, aero-thermodynamics, aero-design are visited with focuses being placed on hypersonic boundary-layer transition process and its underlying physical mechanics, feasible physics-based engineering transition prediction methods, and physics-based modelling of shock-shock, shock-wave/boundary-layer interactions of Scramjet flows. Experimental, analytical and numerical studies of previously relevant studies have also been summarized with a total of twelve transition/intake configurations that can be used as benchmarks for validating physical model development and numerical simulation tools. A case study of Scramjet intake SBLI has been carried out by using computational fluid dynamics approach to understand shock induced flow separation and its consequent influences on combustion performance, along with research perspectives discussed accordingly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call