Abstract
Abstract We firstly generalize the fuzzy way-below relation on an L-poset, and consider its continuity by means of this relation. After that, we introduce a kind of stratified L-generalized convergence structure on an L-poset. In terms of that, L-fuzzy Scott topology and fuzzy Scott topology are considered, and the properties of fuzzy Scott topology are discussed in detail. At last, we investigate the Scott convergence of stratified L-filters on an L-poset, and show that an L-poset is continuous if and only if the Scott convergence on it coincides with the convergence with respect to the corresponding topological space.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have