Abstract

Optical coherence tomography (OCT) is a widely used non-invasive imaging modality for ophthalmic diagnosis. However, the inherent speckle noise becomes the leading cause of OCT image quality, and efficient speckle removal algorithms can improve image readability and benefit automated clinical analysis. As an ill-posed inverse problem, it is of utmost importance for speckle removal to learn suitable priors. In this work, we develop a score prior guided iterative solver (SPIS) with logarithmic space to remove speckles in OCT images. Specifically, we model the posterior distribution of raw OCT images as a data consistency term and transform the speckle removal from a nonlinear into a linear inverse problem in the logarithmic domain. Subsequently, the learned prior distribution through the score function from the diffusion model is utilized as a constraint for the data consistency term into the linear inverse optimization, resulting in an iterative speckle removal procedure that alternates between the score prior predictor and the subsequent non-expansive data consistency corrector. Experimental results on the private and public OCT datasets demonstrate that the proposed SPIS has an excellent performance in speckle removal and out-of-distribution (OOD) generalization. Further downstream automatic analysis on the OCT images verifies that the proposed SPIS can benefit clinical applications. The data and code are available at https://github.com/ lisanqian1212/SPIS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.