Abstract
Optimization problems that include regularization functions in their objectives are regularly solved in many applications. When one seeks second-order methods for such problems, it may be desirable to exploit specific properties of some of these regularization functions when accounting for curvature information in the solution steps to speed up convergence. In this paper, we propose the SCORE (self-concordant regularization) framework for unconstrained minimization problems which incorporates second-order information in the Newton-decrement framework for convex optimization. We propose the generalized Gauss–Newton with Self-Concordant Regularization (GGN-SCORE) algorithm that updates the minimization variables each time it receives a new input batch. The proposed algorithm exploits the structure of the second-order information in the Hessian matrix, thereby reducing computational overhead. GGN-SCORE demonstrates how to speed up convergence while also improving model generalization for problems that involve regularized minimization under the proposed SCORE framework. Numerical experiments show the efficiency of our method and its fast convergence, which compare favorably against baseline first-order and quasi-Newton methods. Additional experiments involving non-convex (overparameterized) neural network training problems show that the proposed method is promising for non-convex optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.