Abstract

Acetylcholine (ACh) is a potent neuromodulator in the brain with multiple, complex effects on neuronal function, most of which are mediated by muscarinic receptors. Generally, the most significant effect is excitation of pyramidal neurones and facilitation of responses to afferent stimulation. Much of the information on the ACh effects comes from studies utilizing in vitro or anesthetized in vivo preparations, while fewer data are available from awake animals or humans. We studied human somatosensory evoked magnetic fields (SEFs), which reflect summated postsynaptic currents in pyramidal neurones in area 3b, and in the opercular somatosensory cortex, when cholinergic transmission was modulated either by a central (scopolamine, 0.3 mg, i.v.) or peripheral (glycopyrrolate, 0.2 mg, i.v.) muscarinic antagonist. A randomized, double-blind, cross-over design was employed. SEFs were elicited by right median nerve stimulation at the wrist with constant-current pulses above motor threshold. The first excitatory cortical response from area 3b (N20m) was not affected by the central muscarinic blockade, while later P35m and P60m deflections were significantly reduced. The responses from the opercular somatosensory cortex showed some tendency toward reduction, but no significant alterations. The results show that somatosensory cortical processing can be modulated by muscarinic transmission at a relatively early stage. Relative membrane hyperpolarization of pyramidal neurons due to scopolamine (caused by blocking an ACh-induced tonic depolarization) is discussed as a possible mechanism underlying the observed effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call