Abstract

ObjectivesThe purpose of this study was to investigate the effect of anodal transcranial direct-current stimulation (tDCS) applied over the primary motor (M1) or the primary somatosensory (S1) cortices on somatosensory evoked magnetic fields (SEFs) following median nerve stimulation. MethodsAnodal tDCS was applied for 15min on the left motor or somatosensory cortices at 1mA. SEFs were recorded following right median nerve stimulation using a magnetoencephalography (MEG) system before and after the application of tDCS. SEFs was measured and compared before and after tDCS was applied over M1 or S1. ResultsThe source strengths for the P35m and P60m increased after tDCS was applied over M1 and that for the P60m increased after tDCS was applied over S1. The mean equivalent current dipole (ECD) location for the P35m was located significantly anterior to that of the N20m, but only during post 1 (10–20min after tDCS was applied over M1). ConclusionOur results indicated that the anodal tDCS applied over M1 affected the P35m and P60m sources on SEF components, while that applied over S1 influenced the P60m source. SignificanceWe demonstrated anodal tDCS applied over M1 or S1 can modulate somatosensory processing and components of SEFs, confirming the hypothesis for locally distinct generators of the P35m and P60m sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.