Abstract

The ring-opening polymerization of cyclic ketene acetals (CKAs) by controlled radical mechanisms represents an alternative route for the synthesis of aliphatic polyesters. For the first time, 5,6-benzo-2-methylene-1,3-dioxepane (BMDO) and 2-methylene-4-phenyl-1,3-dioxolane (MPDL) were homopolymerized by nitroxide mediated polymerization (NMP), from the commercially available SG1-based BlocBuilder MA alkoxyamine. Various experimental conditions (i.e., reaction temperature, nature of solvent, and nature of the alkyl initiating radical) were varied to determine the optimized conditions in terms of polymerization kinetics and living character of the final polymer. Chain-end extensions from either PS-SG1 or PBMDO-SG1 were also performed in order to furnish PS-b-PBMDO and PBMDO-b-PS, respectively, thus demonstrating the synthesis of block copolymers comprising a CKA block. In order to have a better insight into the polymerization mechanism, the occurrence of side reactions was analyzed by 31P NMR spectroscopy and ESI-MS. It was supposed that the ketal-based macroradical could be irreversibly trapped by nitroxide and thus the corresponding macroalkoxyamine decomposed by CO–N bond dissociation. DFT calculations as well as PREDICI modeling were also undertaken in order to support this hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call