Abstract

A common and natural physiological response of the human body is cough, which tries to push air and other wastage thoroughly from the airways. Due to environmental factors, allergic responses, pollution or some diseases, cough occurs. A cough can be either dry or wet depending on the amount of mucus produced. A characteristic feature of the cough is the sound, which is a quacking sound mostly. Human cough sounds can be monitored continuously, and so, cough sound classification has attracted a lot of interest in the research community in the last decade. In this research, three systematic conglomerated models (SCMs) are proposed for audio cough signal classification. The first conglomerated technique utilizes the concept of robust models like the Cross-Correlation Function (CCF) and Partial Cross-Correlation Function (PCCF) model, Least Absolute Shrinkage and Selection Operator (LASSO) model, elastic net regularization model with Gabor dictionary analysis and efficient ensemble machine learning techniques, the second technique utilizes the concept of stacked conditional autoencoders (SAEs) and the third technique utilizes the concept of using some efficient feature extraction schemes like Tunable Q Wavelet Transform (TQWT), sparse TQWT, Maximal Information Coefficient (MIC), Distance Correlation Coefficient (DCC) and some feature selection techniques like the Binary Tunicate Swarm Algorithm (BTSA), aggregation functions (AFs), factor analysis (FA), explanatory factor analysis (EFA) classified with machine learning classifiers, kernel extreme learning machine (KELM), arc-cosine ELM, Rat Swarm Optimization (RSO)-based KELM, etc. The techniques are utilized on publicly available datasets, and the results show that the highest classification accuracy of 98.99% was obtained when sparse TQWT with AF was implemented with an arc-cosine ELM classifier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call