Abstract

Single-cell RNA sequencing (scRNA-seq) data reveal the complexity and diversity of cellular ecosystems and molecular interactions in various biomedical research. Hence, identifying cell types from large-scale scRNA-seq data using existing annotations is challenging and requires stable and interpretable methods. However, the current cell type identification methods have limited performance, mainly due to the intrinsic heterogeneity among cell populations and extrinsic differences between datasets. Here, we present a robust graph artificial intelligence model, a multi-view graph convolutional network model (scMGCN) that integrates multiple graph structures from raw scRNA-seq data and applies graph convolutional networks with attention mechanisms to learn cell embeddings and predict cell labels. We evaluate our model on single-dataset, cross-species, and cross-platform experiments and compare it with other state-of-the-art methods. Our results show that scMGCN outperforms the other methods regarding stability, accuracy, and robustness to batch effects. Our main contributions are as follows: Firstly, we introduce multi-view learning and multiple graph construction methods to capture comprehensive cellular information from scRNA-seq data. Secondly, we construct a scMGCN that combines graph convolutional networks with attention mechanisms to extract shared, high-order information from cells. Finally, we demonstrate the effectiveness and superiority of the scMGCN on various datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call