Abstract

Glass has several advantages over single crystals and transparent ceramics, including easier formability, increased productivity, and higher versatility in composition. However, the scintillation properties should be further enhanced for practical applications. Herein, we focused on fluoroborate glass, which has a high quantum yield. The xCeF3–(50-x)BaF2–25Al2O3–25B2O3 glass showed luminescence quantum efficiency up to 83% with a broad peak at 380 nm, and its concentration in the quantum yield was remarkably low. The lifetime of the X-ray-induced luminescence was also insignificant to the concentration. The light yields were obtained from the pulse height spectrum: for gamma rays from 241Am, up to 411 photons MeV−1; and for neutrons with 252Cf as the source, up to 1717 photons n−1 were observed. The performance of glass for thermal neutron detection using inexpensive natural abundant B2O3 was notably good. Thus, the possibility of developing an inexpensive glass scintillator has been presented here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.