Abstract

AbstractMachine learning (ML) algorithms are currently emerging as powerful tools in all areas of science. Conventionally, ML is understood as a fundamentally data‐driven endeavour. Unfortunately, large well‐curated databases are sparse in chemistry. In this contribution, I therefore review science‐driven ML approaches which do not rely on “big data”, focusing on the atomistic modelling of materials and molecules. In this context, the term science‐driven refers to approaches that begin with a scientific question and then ask what training data and model design choices are appropriate. As key features of science‐driven ML, the automated and purpose‐driven collection of data and the use of chemical and physical priors to achieve high data‐efficiency are discussed. Furthermore, the importance of appropriate model evaluation and error estimation is emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.