Abstract

A comparison of error and resolution properties of 2-D models of electrical resistivity from single and joint inversions of direct-current resistivity (DCR) and radiomagnetotelluric (RMT) data is presented. Linearized model resolution and error estimates are computed from the Jacobian and its smoothness-constrained generalized inverse. As a novelty, linearized model errors are compared to most-squares error estimates to better account for non-linearity. For a synthetic example, linearized analyses yield model errors up to 30 to 40 per cent for data errors of two per cent and resolving kernels spread over several cells in the vicinity of the investigated cell. Most importantly, linearized errors are in good agreement with most-squares errors and, hence, linearized model errors can be representative. DCR data can constrain both resistive and conductive structures whereas RMT data provide superior constraints for conductive structures. For structures within the depth ranges of exploration of both methods, error and resolution of joint inverse models are equal to or better than those of single inversions. For structures outside the depth range of exploration of one method, error and resolution of joint inverse models are close to those of the best single inversion given appropriate data weighting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.