Abstract

Abstract BACKGROUND Glioblastoma (GBM) patient survival and therapy response is greatly hindered by the presence of invasive glioma stem cells (GSC) and the blood-brain barrier (BBB) which limits effective drug delivery. WNT/beta-catenin signaling is important in the development and maintenance of the BBB by mediating transcription of growth factors, multidrug resistance proteins, and junctional proteins. In WNT-subtype medulloblastoma, activating mutations of beta-catenin lead to reciprocal secretion of WNT antagonists such as WIF1 and DKK1 into the tumor microenvironment. These WNT antagonists can act upon the surrounding endothelium and induce a leaky BBB. Therefore, we hypothesize that pharmacological inhibition of WNT/beta-catenin signaling in brain endothelial cells will decrease BBB integrity, enabling enhanced paracellular drug delivery to infiltrative GSCs. METHODS We recapitulated the WNT-medulloblastoma phenotype in GBM by activating WNT/beta-catenin signaling in primary human GSCs, inducing secretion of downstream WNT antagonists. Conditioned-media (CM) from GSCs was then applied to human brain microvascular endothelial cells (HBMEC) to indirectly inhibit WNT signaling. Additionally, we directly inhibited WNT/beta-catenin signaling in HBMECs with the small molecule inhibitor ICG-001. Endothelial cell-cell interaction was measured by electrical impedance using the ACEA xCELLigence system. Fenestration and junctional expression were evaluated by immunoblotting and immunofluorescence. RESULTS ICG-001 or WNT-GSC-CM, but not control GSC-CM, upregulated fenestration related protein, PLVAP, and downregulated junctional proteins claudin-5, ZO-1, and VE-Cadherin in HBMECs. Endothelial cell-cell interaction was transiently decreased by ICG-001 or WNT-GSC-CM. Pre-clinical studies are underway to evaluate the functional impact of WNT/beta-catenin inhibition on BBB integrity and permeability in rodent glioma models. Altogether, these results support targeting WNT/beta-catenin signaling in brain endothelial cells to enhance drug delivery to CNS tumors. CONCLUSION Modulation of intratumoral Wnt/beta-catenin signaling, particularly in highly resistant GSCs, may enhance chemotherapy drug delivery, potentially expanding the drug portfolio and improving the prognosis of GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call