Abstract

We use the concept of quantum entanglement to analyze the Schwinger effect on an entangled state of a qubit and a bosonic mode coupled with the electric field. As a consequence of the Schwinger production of particle-antiparticle pairs, the electric field decreases both the correlation and the entanglement between the qubit and the particle mode. This work exposes a profound difference between bosons and fermions. In the bosonic case, entanglement between the qubit and the antiparticle mode cannot be caused by the Schwinger effect on the preexisting entanglement between the qubit and the particle mode, but correlation can.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.