Abstract

In scalar QED we study the Schwinger pair production from an initial ensemble of charged bosons when an electric field is turned on for a finite period together with or without a constant magnetic field. The scalar QED Hamiltonian depends on time through the electric field, which causes the initial ensemble of bosons to evolve out of equilibrium. Using the Liouville--von Neumann method for the density operator and quantum states for each momentum mode, we calculate the Schwinger pair-production rate at finite temperature, which is the pair-production rate from the vacuum times a thermal factor of the Bose-Einstein distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call