Abstract

This article investigates the Schwinger effect for fermions with background electric and magnetic fields of constant strengths from the point of view of a uniformly accelerated or the Rindler observer. The Dirac equation is solved in a closed form, and the field quantisation in the (3+1)-dimensional Rindler spacetime is performed. The orthonormal local in and out modes for the causally disconnected right and left wedges and the Bogoliubov relations between them are obtained. Next, the global modes are constructed to cover the whole spacetime, and the Bogoliubov relationship between the local and global operators is found. Using them the squeezed state expansion of the global vacuum in terms of local states is acquired and accordingly, the spectra of created particles is found. Clearly, there are two sources of particle creation in this scenario – the Schwinger as well as the Unruh effects. Our chief aim is to investigate the role of the strength of the background electromagnetic fields on the spectra of created particles. We also discuss very briefly some possible implication of this result in the context of quantum entanglement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.