Abstract

In this work we consider two complex scalar fields distinguished by their masses coupled to constant background electric and magnetic fields in the (3+1)-dimensional Minkowski spacetime and subsequently investigate a few measures quantifying the quantum correlations between the created particle-antiparticle Schwinger pairs. Since the background magnetic field itself cannot cause the decay of the Minkowski vacuum, our chief motivation here is to investigate the interplay between the effects due to the electric and magnetic fields. We start by computing the entanglement entropy for the vacuum state of a single scalar field. Second, we consider some maximally entangled states for the two-scalar field system and compute the logarithmic negativity and the mutual information. Qualitative differences of these results pertaining to the charge content of the states are emphasised. Based upon these results, we suggest some possible effects of a background magnetic field on the degradation of entanglement between states in an accelerated frame, for charged quantum fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.