Abstract

Motivated by the recent numerical evidence[1] of a short-range resonating valence bond state in the honeycomb lattice Hubbard model, we consider Schwinger boson mean field theories of possible spin liquid states on honeycomb lattice. From general stability considerations the possible spin liquids will have gapped spinons coupled to Z$_2$ gauge field. We apply the projective symmetry group(PSG) method to classify possible Z$_2$ spin liquid states within this formalism on honeycomb lattice. It is found that there are only two relevant Z$_2$ states, differed by the value of gauge flux, zero or $\pi$, in the elementary hexagon. The zero-flux state is a promising candidate for the observed spin liquid and continuous phase transition into commensurate N\'eel order. We also derive the critical field theory for this transition, which is the well-studied O(4) invariant theory[2-4], and has an irrelevant coupling between Higgs and boson fields with cubic power of spatial derivatives as required by lattice symmetry. This is in sharp contrast to the conventional theory[5], where such transition generically leads to non-colinear incommensurate magnetic order. In this scenario the Z$_2$ spin liquid could be close to a tricritical point. Soft boson modes will exist at seven different wave vectors. This will show up as low frequency dynamical spin susceptibility peaks not only at the $\Gamma$ point (the N\'eel order wave vector) but also at Brillouin zone edge center $M$ points and twelve other points. Some simple properties of the $\pi$-flux state are studies as well. Symmetry allowed further neighbor mean field ansatz are derived in Appendix which can be used in future theoretical works along this direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.