Abstract

We enumerate trivalent reticulations of two- and three-periodic hyperbolic surfaces by equal-sided n -gonal faces, ( n , 3), where n = 7, 8, 9, 10, 12. These are the simplest hyperbolic generalizations of the planar graphene net, (6, 3) and dodecahedrane, (5, 3). The enumeration proceeds by deleting isometries of regular reticulations of two-dimensional hyperbolic space until the ( n , 3) nets can be embedded in euclidean three-space via periodic hyperbolic surfaces. Those nets are then symmetrized in euclidean space retaining their net topology, leading to explicit crystallographic net embeddings whose edges are as equal as possible, affording candidtae patterns for graphitic schwarzites. The resulting schwarzites are the most symmetric examples. More than one hundred topologically distinct nets are described, most of which are novel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.