Abstract

Euclidean three-space and Minkowski four-space identities and uniqueness theorems are reviewed and extended. A Helmholtz identity is used to prove two three-vector uniqueness theorems in Euclidean three-space. The first theorem specifies the divergence and curl of the vector, and the second is a Helmholtz type theorem that sums the irrotational and solenoidal parts of the vector. The second theorem is shown to be valid for three-vector fields that are time dependent. A time-dependent extension of the Helmholtz identity is also derived. However, only the three-vector and scalar components of a Minkowski space four-vector identity are shown to yield two identities that lead to a uniqueness theorem of the first or source type. Also, the field equations of this latter theorem appear to be sufficiently general such that the field equations naturally divide into two distinct classes, a four-solenoidal electromagnetic type class in a relativistic transverse gauge and a four-irrotational class in a relativistic longitudinal gauge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.