Abstract
AbstractThe role of Schwarzian derivative in the study of nonlinear ordinary differential equations is revisited. Solutions and invariances admitted by Painlevé XXV–Ermakov equation, Ermakov equation, and third‐order linear equation in a normal form are shown to be based on solutions of the Schwarzian equation. Starting from the Riccati equation and the second‐order element of the Riccati chain as the simplest examples of linearizable equations, by introducing a suitable change of variables, it is shown how the Schwarzian derivative represents a key tool in the construction of solutions. Two families of Bäcklund transformations, which link the linear and nonlinear equations under investigation, are obtained. Some analytical examples are given and discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have