Abstract

Myelinating and non-myelinating Schwann cells of peripheral nerves are derived from the neural crest via an intermediate cell type, the Schwann cell precursor [K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves, Neuron 12 (1994) 509–527]. The survival and maturation of Schwann cell precursors is controlled by a neuronally derived signal, β neuregulin. Other factors, in particular endothelins, regulate the timing of precursor maturation and Schwann cell generation. In turn, signals derived from Schwann cell precursors or Schwann cells regulate neuronal numbers during development, and axonal calibre, distribution of ion channels and neurofilament phosphorylation in myelinated axons. Unlike Schwann cell precursors, Schwann cells in older nerves survive in the absence of axons, indicating that a significant change in survival regulation occurs. This is due primarily to the presence of autocrine growth factor loops in Schwann cells, present from embryo day 18 onwards, that are not functional in Schwann cell precursors. The most important components of the autocrine loop are insulin-like growth factors, platelet derived growth factor-BB and neurotrophin 3, which together with laminin support long-term Schwann cell survival. The paracrine dependence of precursors on axons for survival provides a mechanism for matching precursor cell number to axons in embryonic nerves, while the ability of Schwann cells to survive in the absence of axons is an absolute prerequisite for nerve repair following injury. In addition to providing survival factors to neurones and themselves, and signals that determine axonal architecture, Schwann cells also control the formation of peripheral nerve sheaths. This involves Schwann cell-derived Desert Hedgehog, which directs the transition of mesenchymal cells to form the epithelium-like structure of the perineurium. Schwann cells thus signal not only to themselves but also to the other cellular components within the nerve to act as major regulators of nerve development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call