Abstract
Considering the exponential growth of the size of the coefficients of the Schur-Cohn transforms of a polynomial, we define new polynomials proportional to the latter and whose coefficients remain small. These Schur-Cohn sub-transforms replace the Schur-Cohn transforms in the computation of the number of roots of a polynomial in a disk. This considerably improves the speed of the Schur-Cohn algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.