Abstract

In the field of signal process, Fast Fourier Transform (FFT) is a widely used algorithm to transform signal data from time to frequency. Unfortunately, with the exponential growth of data, traditional methods cannot meet the demand of large-scale computation on these big data because of three main challenges of large-scale FFT, i.e., big data size, real-time data processing and high utilization of compute resources. To satisfy these requirements, an optimized FFT algorithm in Cloud is deadly needed. In this paper, we introduce a new method to conduct FFT in Cloud with the following contributions: first, we design a parallel FFT algorithm for large-scaled signal data in Cloud; second, we propose a MapReduce-based mechanism to distribute data to compute nodes using big data processing framework; third, an optimal method of distributing compute resources is implemented to accelerate the algorithm by avoiding redundant data exchange between compute nodes. The algorithm is designed in MapReduce computation framework which contains three steps: data preprocessing, local data transform and parallel data transform to integrate processing results. The parallel FFT is implemented in a 16-node Cloud to process real signal data The experimental results reveal an obvious improvement in the algorithm speed. Our parallel FFT is approximately five times faster than FFT in Matlab in when the data size reaches 10 GB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.