Abstract

In this paper, we consider the existence and multiplicity of nontrivial solutions to a quadratically coupled Schrödinger system [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are constants and [Formula: see text], [Formula: see text]. Such type of systems stem from applications in nonlinear optics, Bose–Einstein condensates and plasma physics. The existence (and nonexistence), multiplicity and asymptotic behavior of vector solutions of the system are established via variational methods. In particular, for multiplicity results we develop new techniques for treating variational problems with only partial symmetry for which the classical minimax machinery does not apply directly. For the above system, the variational formulation is only of even symmetry with respect to the first component [Formula: see text] but not with respect to [Formula: see text], and we prove that the number of vector solutions tends to infinity as [Formula: see text] tends to infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.