Abstract

The advent of the laser as an intense, coherent light source gave birth to nonlinear optics, which now plays an important role in many areas of science and technology. One of the first applications of nonlinear optics was the production of coherent light of a new frequency by multi-wave mixing of several optical fields in a nonlinear medium. Until the experimental realization of Bose-Einstein Condensation (BEC) there had been no intense coherent source of matter-waves analogous to the optical laser. BEC has already been exploited to produce a matter-wave 'laser' atom optics was reported: the observation of coherent four wave mixing in which three sodium matter waves mix to produce a fourth. The experiment utilized light pulses to create two high-momentum wavepackets via Bragg diffraction from a stationary Bose- Einstein condensate. The high-momentum components and the remaining zero momentum condensate component interact to form a new momentum component due to the nonlinear self- interaction of the bosonic atoms. We develop a quantum mechanical description, based on the slowly-varying-envelope approximation to the time-dependent nonlinear Schroedinger equation, to describe four-wave mixing in Bose-Einstein condensates and apply this description to understand the experimental observations and to make new predictions. We examine the role of phase-modulation, momentum and energy conservation, and particle number conservation in four-wave mixing of matter waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.