Abstract

AbstractA real algebraic curve of genus g is a pair (S,〈 τ 〉), where S is a closed Riemann surface of genus g and τ: S → S is a symmetry, that is, an anti-conformal involution. A Schottky uniformization of (S,〈 τ 〉) is a tuple (Ω,Γ,P:Ω → S), where Γ is a Schottky group with region of discontinuity Ω and P:Ω → S is a regular holomorphic cover map with Γ as its deck group, so that there exists an extended Möbius transformation $\widehat{\tau}$ keeping Ω invariant with P o $\widehat{\tau}$=τ o P. The extended Kleinian group K=〈 Γ, $\widehat{\tau}$〉 is called an extended Schottky groups of rank g. The interest on Schottky uniformizations rely on the fact that they provide the lowest uniformizations of closed Riemann surfaces. In this paper we obtain a structural picture of extended Schottky groups in terms of Klein–Maskit's combination theorems and some basic extended Schottky groups. We also provide some insight of the structural picture in terms of the group of automorphisms of S which are reflected by the Schottky uniformization. As a consequence of our structural description of extended Schottky groups, we get alternative proofs to results due to Kalliongis and McCullough (J. Kalliongis and D. McCullough, Orientation-reversing involutions on handlebodies, Trans. Math. Soc. 348(5) (1996), 1739–1755) on orientation-reversing involutions on handlebodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.