Abstract

A quantitative model of the electrical activity of metallic precipitates in Si is formulated with an emphasis on the Schottky junction effects of the precipitate–Si system. Carrier diffusion and carrier drift in the Si space charge region are accounted for. Carrier recombination is attributed to the thermionic emission mechanism of charge transport across the Schottky junction rather than the surface recombination. It is shown that the precipitates can have a very large minority carrier capture cross-section. Under weak carrier generation conditions, the supply of minority carriers is found to be the limiting factor of the recombination process. The plausibility of the model is demonstrated by a comparison of calculated and available experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.