Abstract

The spectra of massless Dirac operators are of essential interest e.g. for the electronic properties of graphene, but fundamental questions such as the existence of spectral gaps remain open. We show that the eigenvalues of massless Dirac operators with suitable real-valued potentials lie inside small sets easily characterised in terms of properties of the potentials, and we prove a Schnol'-type theorem relating spectral points to polynomial boundedness of solutions of the Dirac equation. Moreover, we show that, under minimal hypotheses which leave the potential essentially unrestrained in large parts of space, the spectrum of the massless Dirac operator covers the whole real line; in particular, this will be the case if the potential is nearly constant in a sequence of regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.