Abstract

In many models of sand suspension under waves, the diffusivity of sediment is related to the diffusivity of momentum by the inverse of the turbulent Schmidt number. The value and parameterization of this number has been the topic of much research, yet a lack of consensus has led to ad hoc adjustments in models of turbulent sediment suspensions, with apparently little physical justification. In order to study sediment diffusivity we conducted laboratory experiments to generate gradient-only sediment diffusion. Concentrations of sand suspended by near-isotropic turbulence generated by an oscillating grid, together with detailed velocity measurements, were used to calculate vertical profiles of the Schmidt number with a range of grain sizes and flow conditions. Initial results suggest that momentum diffusivity is greater than sediment diffusivity, and that the ratio of the two scales with grid Reynolds number. Ongoing work will ascertain whether an apparent grain size dependence could instead be explained by two-way feedbacks between sediment and turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.