Abstract

Dystrophin and dystrobrevin are distantly related proteins that form a heterodimeric membrane-bound complex in all metazoa so far studied. The signature feature of the dystrophin/dystrobrevin/dystrotelin superfamily is a highly conserved cluster of domains whose integrity and size are maintained in all known members— more than 60 sequences so far reported. We were therefore surprised to find that the analogous regions of the Schistosoma mansoni proteins bear multiple large insertions amounting to 100% (dystrophin) and 35% (dystrobrevin) of their expected size. We isolated orthologous sequences from Schistosoma haematobium and Schistosoma bovis, and found that the insertions have a 10-fold higher rate of change ( K a/ K s value) than their respective host sequences, suggesting a much lower degree of functional constraint. A survey of known S. mansoni protein sequences shows that only two other proteins (both acetylcholine receptors) share these properties. We discuss the implications of the positions and sizes of these insertions for the structure and function of the dystrophins and dystrobrevins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.