Abstract

We study approximation algorithms for optimization of wireless spectrum access with n communication requests when interference conditions are given by the Rayleigh-fading model. This model extends the deterministic interference model based on the signal-to-interference-plus-noise ratio (SINR) using stochastic propagation to address fading effects observed in reality. We consider worst-case approximation guarantees for the two standard problems of capacity maximization and latency minimization. Our main result is a generic reduction of Rayleigh fading to the deterministic non-fading model. It allows to apply existing algorithms for the non-fading model in the Rayleigh-fading scenario while losing only a factor of O(log* n) in the approximation guarantee. This way, we obtain the first approximation guarantees for Rayleigh fading and, more fundamentally, show that non-trivial stochastic fading effects can be successfully handled using existing and future techniques for the non-fading model. We generalize these results in two ways. First, the same results apply for capacity maximization with variable data rates, when links obtain (non-binary) utility depending on the achieved SINR. Second, for binary utilities, we use a more detailed argument to obtain similar results even for distributed and game-theoretic approaches. Our analytical treatment is supported by simulations illustrating the performance of regret learning and, more generally, the relationship between both models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.