Abstract

We study algorithms for wireless spectrum access of $n$ communication requests when interference conditions are given by the Rayleigh-fading model. This model extends the recently popular deterministic interference model based on the signal-to-interference-plus-noise ratio (SINR) using stochastic propagation to address fading effects observed in reality. We consider worst-case approximation guarantees for the two standard problems of capacity maximization (maximize the expected number of successful transmissions in a single slot) and latency minimization (minimize the expected number of slots until all transmissions were successful). Our main result is a generic reduction of Rayleigh fading to the deterministic SINR model. It allows to apply existing algorithms for the non-fading model in the Rayleigh-fading scenario while losing only a factor of O(logast n) in the approximation guarantee. This way, we obtain the first approximation guarantees for Rayleigh fading and, more fundamentally, show that non-trivial stochastic fading effects can be successfully handled using existing and future techniques for the non-fading model. Using a more detailed argument, a similar result applies even for distributed and game-theoretic capacity maximization approaches. For example, it allows to show that regret learning yields an O(log* n)-approximation with uniform power assignments. Our analytical treatment is supported by simulations illustrating the performance of regret learning and, more generally, the relationship between both models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call