Abstract

Text is a significant tool for human communication, and text recognition in scene images becomes more and more important. In this paper, we propose a residual convolutional recurrent neural network for solving the task of scene text recognition. The general convolutional recurrent neural network (CRNN) is realized by combining convolutional neural network (CNN) with recurrent neural network (RNN). The CNN part extracts features and the RNN part encodes and decodes feature sequences. In order to improve the accuracy rate of scene text recognition based on CRNN, we explore different deeper CNN architectures to get feature descriptors and analyze the corresponding text recognition results. Specifically, VGG and ResNet are introduced to train these different deep models and obtain the encoding information of images. The experimental results on public datasets demonstrate the effectiveness of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.